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a b s t r a c t

This paper investigates the use of using remotely sensed observation and full coverage hydroacoustic

datasets to quantify habitat suitability for a marine demersal fish, the blue-throated wrasse. Because of

issues surrounding the detection of species using remotely sensed video techniques, the application of

presence-only techniques are well suited for modeling demersal fish habitat suitability. Ecological-

Niche Factor Analysis is used to compare analyses conducted using seafloor variables derived from

hydroacoustics at three spatial scales; fine (56.25 m2), medium (506.25 m2) and coarse (2756.25 m2), to

determine which spatial scale was most influential in predicting blue-throated wrasse habitat

suitability. The coarse scale model was found to have the best predictive capabilities with a Boyce Index

of 0.8070.26. The global marginality and specialization values indicated that, irrespective of spatial

scale, blue-throated wrasse prefer seafloor characteristics that are different to the mean available

within the study site, but exhibit a relatively wide niche. Although variable importance varied over the

three spatial scale models, blue-throated wrasse showed a strong preference for regions of shallow

water, close to reef, with high rugosity and maximum curvature and low HSI-B values. Generally the

spatial patterns in habitat suitability were well represented in the Marine National Park compared to

adjacent waters. However, some significant differences in spatial patterns were observed. Interspersion

and Juxtaposition Indexes for unsuitable and highly suitable habitat were significantly smaller inside

the Marine National Park, while the Mean Shape Index of unsuitable habitat in the Marine National Park

was significantly larger.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Predictive geographical modeling is increasingly being recog-
nized as an important tool for estimating species’ habitat
suitability, which is a fundamental step in the planning of
conservation and management programs (Franklin, 1995; Pearce
and Ferrier, 2001). These techniques allow the prediction of a
species’ potential habitat suitability, or distribution, beyond the
range of direct observation data alone. Furthermore predictive
geographic modeling serves a variety of purposes in applied
ecology, including identifying areas of high conservation potential,
assessment of suitable habitat representativeness and spatial
patterns within protected areas, identifying the best sites for
species reintroductions, designing wildlife corridors, predicting
sites at risk for disease or exotic species invasions, and predicting
how species distributions may change in response to manage-
ment decisions and climate change (Manel et al., 2001). Although
originating and being applied more commonly in terrestrial
ll rights reserved.
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environments, advances in marine remote sensing technologies
and the analytical capabilities of Geographic Information System
(GIS) has seen an increase in marine applications of habitat
suitability modeling (Brown et al., 2005; Bryan and Metaxas,
2007; Galparsoro et al., 2009; Iampietro et al., 2005; Pittman
et al., 2007; Wilson et al., 2007).

High-resolution multi-beam echo-sounder data (MBES) allows
the generation of detailed full-coverage spatially explicit seafloor
datasets over large geographical regions (Iampietro et al., 2005;
Moore et al., 2009; Nasby-Lucas et al., 2002; Wilson et al., 2007).
MBES data are ideal for the application of terrain analysis
techniques which form variable datasets for input into predictive
models (Wilson et al., 2007). Advances in remotely operated
underwater video systems offer the ability to cost-effectively
capture observation data beyond the range of traditional methods
(e.g. SCUBA Assis et al., 2008) and is a viable method in estimating
fish population dynamics (Lauth et al., 2004; Morrison and
Carbines, 2006; Watanabe et al., 2004). Towed video techniques
have produced similar results to diver transects for estimating
fish population dynamics, without being restricted by depth or
bottom time (Stobart et al., 2007). It also has advantages over
capture methods and baited video systems as it is able to
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continuously capture data over seafloor transitional zones
(Spencer et al., 2005). Morrison and Carbines (2006), for example,
compared a large range of commonly used fish survey techniques
(i.e. trawls, traps, nets, jigs, long-lining, baited camera and SCUBA
diver) to a towed/drift video system to estimate the abundance of
snapper (Pagrus auratus Forster) during their nighttime resting
period. They found that the towed video system appeared to
provide better estimates of population abundance because it was
not limited by depth, deployment time or size class selectivity.
The integration of high-resolution MBES data and presence
records from towed video datasets provides an opportunity to
develop models of fish habitat suitability over large areas of
seafloor.

Different mathematical techniques have been developed for
habitat suitability models (Guisan and Zimmermann, 2000); those
that require presence–absence data (e.g. Generalized Linear
Modeling) and more recently those that involve presence-only
data (e.g. ecological-niche factor analysis (ENFA) (Hirzel et al.,
2002)). Although towed video is well suited to estimating fish
occurrences, obtaining reliable absence data for highly mobile
demersal fishes that are closely associated with seafloor struc-
tures (e.g. kelp beds or overhanging cliff structures) from a
remotely sensed video image can potentially result in an under-
estimate species’ occurrence. Thus, the application of the latter of
these two techniques will be the focus of this study. Spatially
explicit presence-only models utilize some form of environmental
envelope or distance approach that compares the environmental
niche of a species (defined from occurrence datasets) to the
ecological characteristics of the entire study area (stored as GIS
layers) (Hirzel et al., 2002). While presence-only modeling is
commonly used in terrestrial ecology (Brotons et al., 2004; Elith
et al., 2006; Hirzel, 2001; Phillips et al., 2006; Titeux, 2006; Tsoar
et al., 2007), recent marine applications have yielded promising
results, particularly using ENFA. ENFA has been applied for
modeling coral distribution at local (Dolan et al., 2008), regional
(Bryan and Metaxas, 2007) and global (Tittensor et al., 2009)
scales. It has also been applied to mobile marine species to
determine cetacean distribution (Praca et al., 2009), sea bird
feeding habitats (Skov et al., 2008) and suitable lobster habitat
(Galparsoro et al., 2009; Wilson et al., 2007). Furthermore,
because presence-only models are comparatively robust to low
occurrence sample size, often reaching near optimal performance
between 30 and 50 occurrences (Hernandez et al., 2006; Stock-
well and Peterson, 2002; Wisz et al., 2008), they are ideal for
modeling applications where observation data is limited. These
characteristics make presence-only techniques well suited for
marine demersal fish habitat suitability modeling.

Species can potentially respond to habitat variables at different
spatial scales (Freemark and Merriam, 1986). Because each
species responds to the environment at a unique range of scales
(Levin,1992), there is no single correct spatial scale at which to
describe species-habitat relationships (Wiens, 1989). Thus, asses-
sing species–environment relationships at multiple scales are
necessary (Cushman and McGarigal, 2003) and are becoming
commonplace (Carroll et al., 1999; Fischer et al., 2004; Thompson
and McGarigal, 2002; Wilson et al., 2007; Zabel et al., 2003).

Blue-throated wrasse (Notolabrus tetricus Richardson) are
a species common to the inshore waters of southern Australia.
Like numerous other wrasse species found along southern
Australia, they are protogynous hermaphrodites (Barrett, 1995;
Shepherd and Clarkson, 2001). Exhibiting well-defined home
ranges ranging from 400 to 775 m2 for males and 225–725 m2 for
females, they complete their life-cycle in a relatively small area
(Barrett, 1995). The species has recently become the focus of a
rapidly expanding commercial line and trap fishery in Victoria,
south-east Australia. Coupled with likely population structuring
at a localized scale and a burgeoning fishing industry, the species
has been identified as being highly susceptible to over-exploita-
tion (Smith et al., 2003). Their sedentary and highly territorial
nature (Barrett, 1995) also means that they may exhibit strong
associations with a particular habitat. This combined with their
potential susceptibility to over-exploitation makes them an ideal
candidate for habitat suitability modeling.

The objectives of this study are threefold. Firstly, we use ENFA
to develop a habitat suitability model for blue-throated wrasse.
Secondly, we run models using hydroacoustics sampled at three
spatial scales to determine the most influential for predicting
blue-throated wrasse habitat suitability. The use of the same
occurrence dataset across the different spatial scale models
permits a direct comparison of the model outputs. Finally, we
apply landscape pattern indices using the best performing model
to compare the spatial patterns of habitat suitability classes
within the Discovery Bay Marine National Park with adjacent
waters.
2. Materials and methods

2.1. Study area

The study area was located on the western side of Cape
Duquesne, south-eastern Australia (Fig. 1) and encompassed a
total area 39.8 km2, with 26.3 km2 of this situated in the Discovery
Bay Marine National Park. The site ranged in depth from 12 to
80 m, with mean water temperatures ranging from 12 1C in winter
to 18 1C in summer (CSIRO, 2009). The seafloor of the area reflects
the region’s rich volcanic history. Sheer basalt reef structures rise
some 20 m from the seafloor and are covered in a rich array of
temperate southern Australian flora and fauna. The shallow
(o20 m) reefs within this region support a high diversity of
canopy dominating species (dominated by Ecklonia radiata

Agradh, Phyllospora comosa Agradh and Durvillaea potatorum

Areschoug), with understory communities dominated by mixed
red algae increasing with depth. Deeper reefs were found to
consist of a sponge dominated habitat with other invertebrates
including ascidians, bryozoans and gorgonians (Ierodiaconou
et al., 2007b).
2.2. Multi-beam echo-sounder survey and model variables

Model variables were derived from multi-beam echo-sounder
(MBES) data that was acquired on the 2nd and 3rd of November
(38 h), 2005 as part of the Victorian Marine Habitat Mapping
Project (Ierodiaconou et al., 2007b). MBES bathymetry and
backscatter information were collected using a hull-mounted
Reson Seabat 8101 multi-beam system with 100% overlap of run
lines to ensure full site coverage. Precise positioning was achieved
using Starfix HP Differential GPS system (70.30 m), integrated
with a positioning and orientating system for marine vessels (POS
MV) for heave, pitch, roll and yaw corrections (70.021 accuracy).
Navigation, data logging, real-time quality control, display and
post-processing were carried out using the Starfix suite 7.1 (Fugro
Survey Pty Ltd.). Sound velocity profiles were taken every 12 h
during survey operations to account for variations in sound speed
through the water column. Bathymetry data were corrected to the
lowest astronomical tide based on reading from an Aquatec 320
tide gauge that was deployed during the survey. The XYZ data
were then used to produce a bathymetric grid at 2.5 m horizontal
resolution and a range resolution of 712.5 mm. Backscatter data
were corrected for gain and time varied gain using the University
of New Brunswick (UNB1) algorithm (Starfix suite 7.1). Data were



Fig. 1. Bathymetric hillshade highlighting the study area used to investigate habitat suitability. Shading indicates water depth. Dashed black line shows Discovery Bay

Marine Park Boundary. Solid black lines illustrate towed video transects positions.
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post-processed by trained surveyors to hydrographic standards.
Backscatter processing included the correction for transmission
loss, the actual area of ensonification on the bathymetric surface,
source level, and transmit and receive beam patterns (see Fonseca
et al., 2008). Additionally backscatter was corrected for seafloor
bathymetric slope from the MBES bathymetry dataset. Final
products of the MBES survey constituted cleaned 2.5 m back-
scatter intensity (dB) and bathymetry (m) grid layers.

The processed 2.5 m gridded backscatter and bathymetry were
used to derive 10 additional variables to further characterize local
variation within the MBES imagery and delineate analogous
regions of morphology and signal scattering (Table 1). These
derivatives were selected for their expected influence over
distribution of fish as found in previous investigations (e.g.
rugosity—Friedlander and Parrish, 1998; slope—Moore et al.,
2009; bathymetric variance—Pittman et al., 2007; distance to
nearest reef—Wedding et al., 2008). They represent variation in
seafloor characteristics in terms of proximity to reef (Euclidean
distance to nearest reef), exposure to wave energy and seafloor
currents (aspect, benthic position index (BPI), slope), complexity
and surface area of seafloor structure (complexity, rugosity,
maximum curvature) and variations in high and low frequency
signal scattering properties of the substratum recorded in the
backscatter intensity dataset (Hue-saturation-intensity).
Euclidean distance to nearest reef was calculated using Spatial
Analyst tool kit in ArcGIS 9.3 based on a predicted substrata
dataset using automated classification techniques as part of the
Victorian Marine Habitat Mapping Project (Ierodiaconou et al.,
2007a).

Variables were calculated at three spatial scales to assess
which most influenced wrasse habitat suitability. The spatial
scales were chosen to encompass the home range of 225–775 m2

estimated for blue-throated wrasse (Barrett, 1995). Consequently,
we included three window sizes of 3�3, 9�9 and 21�21 cells,
which equates to ground areas of 56.25, 506.25, and 2756.25 m2

(hereafter referred to as fine, medium and coarse scale models).
These windows represent the finest model possible, a midpoint of
the estimated home range and approximately 3.5 times larger
than the home range. A correlation tree derived in Biomapper 4.0
was used to assess the correlation between variables at each
spatial scale. To avoid incorporating redundant data, a default
threshold of 0.5 was chosen in line with previous studies
(Galparsoro et al., 2009; Hirzel et al., 2002). For each spatial
scale, the same least correlated subset of the initial 13 variables
(Table 1) were used to allow direct comparison of modeling
results.
2.3. Towed video fish surveys

Demersal fish were surveyed using towed video transects.
After visual analysis of the bathymetry dataset, nine video
transects were selected perpendicular to the coast to capture
the main physical and biological gradients within the site (e.g.
depth, exposure, substrata, benthic biological habitat). Over four
days (24th and 25th of March, and the 26th and 27th of April
2006) 20.8 h of georeferenced underwater towed video footage,
covering 56 linear km of seafloor were collected (Fig. 1). The
towed-camera system comprised of a micro remotely operated
vehicle (VideoRay Pro 3) mounted in a custom stainless cage to
protect the system from collision as well as providing a secure
tow point. The camera was towed at speeds between 0.5 and
1.0 m s�1 (1–2 kn) at a height approximately 1 m above the
seafloor. The wide-angle camera was tilted downward to max-
imize a consistent field of view of the benthos immediately in
front of the camera, as well as the water column ahead. This
configuration facilitated an ample field of view to observe
demersal fish and allowed safe navigation of the equipment.
The video signals were transferred to the surface via an umbilical
cable where they were monitored in real-time for navigation ease
and recorded on mini-DV tape. The survey positional data were
recorded (at 1 s intervals) through the integration of vessel
location (Omnistar satellite dGPS), motion sensor (KVH) and
acoustic camera positioning (Tracklink Ultra Short Baseline).
The video imagery was time stamped with positional data
prior to being recorded to tape. Subsequently, the video footage
and the camera track files were visually analyzed to record the
precise position of fish species occurrence within approximately



Table 1
Variables used in the ENFA models with biological relevance to blue-throated wrasse.

Model variables Variable description Kernels sizes Software

Aspect

Eastness Because aspect is a circular variable (i.e. large values (3591) are very close to small values (11)) the data were

transformed. Aspect was transformed by trigonometric functions (Roberts, 1986). Eastness values close to 1

represent east-facing slopes, while those facing west have a value close to �1

3�3, 9�9,

21�21 cells

Spatial

Analyst—ArcGIS

9.3

Northness Northness is represented in values close to 1 if the aspect is generally northward, close to �1 if the aspect is

southward

3�3, 9�9,

21�21 cells

Spatial

Analyst—ArcGIS

9.3

Backscatter Backscatter intensity is important in quantifying physical properties of the seafloor (Le Gonidec et al., 2003).

Provides a proxy for seafloor hardness and softness

3�3, 9�9,

21�21 cells

Fugro Starfix

suite 7.1

Bathymetry Bathymetry provides a measure of depth for the entire site 3�3, 9�9,

21�21 cells

Fugro Starfix

suite 7.1

Benthic position

index

Measure of a location relative to the overall landscape. Calculated by comparing the elevation of a cell with

the mean elevation of surrounding cells by the three analysis extents. Regions with positive values are

higher than their surroundings, where as areas negative values are lower. Flat areas have values closer to

zero (Weiss, 2001)

8, 22, 52 scale

factor

BTM Tool for

ArcGIS

Complexity Complexity provides a measure of the rate of change of the slope and a measure of localized variability in

seafloor structure

3�3, 9�9,

21�21 cells

ENVI 4.2

Euclidean distance

to nearest reef

The Euclidean distance (in m) to nearest reef was calculated from extracting the reef class from a

substratum map that was generated as a part of the Victorian Marine Mapping Project using a decision tree

classifier (see Ierodiaconou et al., 2007b)

Spatial

Analyst—ArcGIS

9.3

HSI-blue A Synthetic Color Image transformation was applied to the backscatter. This transforms backscatter from a

gray scale image into a synthetic color image by applying high pass and low pass filters. Low pass data are

assigned to hue, while high pass is assigned to intensity, and a fixed saturation level is used. These hue,

saturation and intensity data are transformed into red, green, and blue (RGB) spectrum, producing a three

band color image. This transformation is commonly used with radar data to improve the display of subtle

large-scale features while retaining fine detail (Daily, 1983)

3�3, 9�9,

21�21 cells

ENVI 4.2

-green

-red

Maximum curvature Maximum curvature provides the greatest curve, relative to its neighbors, of either the profile (i.e. the

curvature in the direction of maximum downwards slope) or plan (i.e. the shape of the surface viewed as if a

horizontal plane) convexity (Gallant and Wilson, 1996)

3�3, 9�9,

21�21 cells

ENVI 4.2

Rugosity Rugosity, or vertical relief, is the ratio of surface area to planar area within analysis window and is to

represent a measure of structural complexity (Lundblad et al., 2006)

3�3, 9�9,

21�21 cells

BTM Tool for

ArcGIS

Slope Slope is the rate of change in bathymetry over the analysis window (Wilson et al., 2007) 3�3, 9�9,

21�21 cells

Spatial

Analyst—ArcGIS

9.3

Kernels sizes give the number of cells or scale factor used to calculate fine, medium and coarse models.
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2 m either side and 3 m into the water column above the
transects. Transects were analyzed by the same observer to
decrease any between operator bias. Video footage was only
excluded from the analysis when the video quality was too poor
to identify fish or view the seafloor. To minimize erroneously
positioned fish, individuals were only counted if they were
observed in the foreground (within 5 m of the camera) of the
video footage.
2.4. Model formulation and evaluation

Ecological-niche factor analysis (ENFA) was used to develop
the habitat suitability models using Biomapper 4 software (Hirzel
et al., 2007). For each spatial scale, rasters of the least correlated
subset of variables were imported into the Biomapper program
along with a grid identifying which cells were classified as
‘presence’ for blue throated wrasse. A Box–Cox transformation
was used to improve the normality of the variables (Hirzel et al.,
2002). ENFA then reduces original variables to a subset of
uncorrelated factors. MacArthurs broken-stick rule (MacArthur,
1957) was used to determine how many of these factors were
retained in the habitat suitability calculation. The ‘broken-stick’
concept of MacArthur (1957) describes how species partition a
resource pool in multi-dimensional space into non-overlapping
niches. Based on this concept, the ‘MacArthurs broken-stick’ rule
compares the eigenvalue distribution of the factors to ensure that
there is no overlap and that only those which are necessary are
retained (i.e. with eigenvalues 41). Thus, the retained factors
explain most of the information related to the distributions of the
original variables and constitute the dimensions of the environ-
mental-space for the calculation of habitat suitability. The
important difference between ENFA, and other data reduction
techniques such as principal components analysis, is that rather
than only accounting for the variance among factors the ENFA
factors have ecological relevance (Hirzel et al., 2002). Marginality
of the species (i.e. how species’ habitat differs from the mean
available conditions) is represented in the first factor, while
specialization (breadth of the ecological niche) is maximized in
the subsequent factors (Hirzel et al., 2001). The factor coefficients
give the importance of each variable to the different factors and
the relative range of the variables preferred by the species
(positive coefficients indicate preference for areas above mean for
that variable, and the inverse for negative coefficients). They are
also used to compute a global marginality (varying between 0 and
1, with higher values indicating greater differences) and specia-
lization (indicating some degree of specialization when greater
than 1). We use the distance geometric mean algorithm to
generate habitat suitability maps. This algorithm computes a
smooth set of habitat suitability envelopes by relating each
observation cell in such a way that the denser these are in the
environmental-space, the higher the habitat suitability (Hirzel
et al., 2007). A cell with a habitat suitability value of zero would
have the least suitable combination of values for all variables,
while a cell with a value of 100 would have the most suitable
combination.
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To determine which spatial scale model performed best,
habitat suitability models were evaluated in Biomapper 4 using
the predicted-to-expected ratio curve (p/e curve) and the
continuous Boyce index (B) (Boyce et al., 2002; Hirzel et al.,
2006). A perfect model would exhibit a straight increasing line p/e
curve. The B is a Spearman rank correlation coefficient between
the p/e ratio and the habitat suitability values. It varies from �1
to 1, a perfect model having a B¼1. Hirzel et al. (2006), however,
compared the accuracy of different validation methods and found
a BE0.6 corresponds to an Area under the receiver operating
characteristic (ROC) curve 40.9 (ROC evaluates the proportion of
correctly and incorrectly classified predictions over a continuous
range of presence–absence thresholds. The closer ROC is to 1, the
better the model).

In practice, the occurrence data is partitioned into k indepen-
dent subsets, and k�1 partitions are used as a calibration dataset,
leaving the last partition for validation. We used k¼10, together
with 1 random seed, for each spatial scale model. To generate the
p/e curve for each model, we used three equal-width habitat
suitability windows (0–33, 34–67, and 68–100). If a model
properly predicts the suitable areas, the p/e ratio should be o1
for unsuitable habitat, 41 for moderately suitable habitat and
b1 for highly suitable habitat. The p/e ratio should also exhibit a
monotonic increase from unsuitable to highly suitable. B is then
computed between the p/e ratio and the mean values of habitat
suitability window. The p/e curve and B are then produced k (in
our case 10) times, each time leaving out another validation
partition, allowing the assessment of their central trend and
variance (presented here as mean7SD). Using the p/e curve,
thresholds were estimated following Hirzel et al. (2006), which
are the points where the curve is o1, 41 and b1. This permits
reclassification of predicted maps into meaningful habitat suit-
ability classes, which can then be used to analyze spatial patterns.
2.5. Spatial patterns of blue-throated wrasse habitat suitability

Using the best performing model, the spatial arrangement and
representation of the three habitat suitability classes (determined
by p/e curve) were compared inside Discovery Bay Marine
National Park with adjacent waters. PatchGrid Analyst 4 exten-
sion in ArcGIS 9.3 was used to generate six measures of landscape
pattern indices. Twenty-two non-overlapping landscape analysis
windows were randomly positioned in- and outside the Marine
National Park. The size of the landscape analysis window was
Fig. 2. Predicted blue-throated wrasse habitat suitability for the different spatial scale

spatial scale model: area 506.25 m2, and (c) coarse spatial scale model: area 2756.25 m2

ENFA.
selected following recommendations by O’Neill et al. (1996),
suggesting that the landscape analysis window be 2–5 times
larger than the largest patch of interest. A 550�550 m2 landscape
analysis window was selected because it was large enough to
contain the 98th percentile of habitat suitability patches. For each
landscape analysis window, interspersion and juxtaposition index
(IJI), largest patch index (LPI), landscape shape index (LSI), mean
patch size (MPS), mean shape index (MSI) and patch size
coefficient of deviation (PSCV) were calculated (see footnotes in
Table 4 for descriptions). While there are numerous landscape
pattern indices available (McGarigal and Marks, 1994), these were
selected based on the findings by Teixido et al. (2002), who
identified them as an adequate subset of indices to describe
marine landscape patterns. The differences in these indices
between the Discovery Bay Marine National Park and adjacent
waters were compared to assess the representativeness of the
Marine National Park for blue-throated wrasse habitat suitability.
A non-parametric Kruskal–Wallis test was used for comparisons
as the raw and transformed data did not conform to parametric
assumptions.
3. Results

3.1. Ecological-Niche Factor Analysis modeling and scale selection

A total of 83 blue-throated wrasse individuals were identified
from the video analysis, as some frames included multiple
individuals this equated to 61 occurrences records. To determine
which variable spatial scale most influenced blue-throated wrasse
habitat suitability three ENFA models were generated. The models
were based on three different spatial scales (fine: 56.25 m2,
medium: 506.25 m2, and coarse: 2756.25 m2) and were con-
structed using the same occurrence dataset to enable direct
comparison between outputs (Fig. 2). For each scale model, ENFA
reduced the least correlated subset of variables (bathymetry,
benthic position index, eastness, Euclidean distance to nearest
reef, hue-saturation-intensity-blue, maximum curvature,
northness and rugosity) to five explanatory factors (selected by
comparison with the broken-stick distribution (Hirzel et al., 2002;
MacArthur, 1957)). These five explanatory factors were fitted
using the distance geometric mean algorithm to define blue-
throated wrasse habitat suitability at each spatial scale.

Global marginality, specialization and Boyce Index values for
each spatial scale investigated are presented in Table 2. Although
models and occurrences: (a) fine spatial scale model: area 56.25 m2, (b) medium

. Habitat suitability models generated using the geometric mean algorithm within
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all models performed well, the Boyce Index indicated that the
coarse scale model (0.8070.26) (Fig. 3) performed better than
both the fine and medium scale models, 0.7570.33 and
0.6070.42, respectively. The p/e curves for all models showed a
positive monotonic trend as suitability increased (Fig. 4). As the
spatial scale increased, global marginality was found to decrease
from 1.03 to 0.95, but global specialization values stayed the same
(1.54). These global marginality and specialization values indicate
that, irrespective of the spatial scale analyzed, blue-throated
wrasse prefer regions that are different to the mean available but
exhibit a relatively wide niche.

3.1.1. Fine scale model

The marginality factor indicated a strong relationship for areas
close to reef (�0.61) and high rugosity (0.61) (Table 3). This factor
also showed the importance of higher HSI-B values (0.31), shallow
water (bathymetry: 0.30) and high maximum curvature (0.25).
Specialization coefficients highlighted that blue-throated wrasse
are restricted to regions that are shallow water (bathymetry:
0.79), low HSI-B (�0.69), east facing (eastness: 0.66), depressions
(BPI: �0.59), close proximity to reef (0.55) and lower maximum
curvature (�0.43). Northness at this scale did not appear to be
important (Table 3).

3.1.2. Medium scale model

The marginality factor showed a similar trend to the fine scale
model, with a strong association for areas close to reef (�0.67),
Table 2
Continuous Boyce Index (B, varying between –1 and 1), global marginality (M,

varying generally between 0 and 1) and global specialization (S, indicating some

degree of specialization when superior to 1) for the fine, medium and coarse scale

models.

Scale B (mean7SD) M S

Fine 0.770.33 1.03 1.54

Medium 0.670.42 0.93 1.54

Coarse 0.870.26 0.92 1.54

Fig. 3. Predicted habitat suitability for blue-throated wrasse over the whole study are

mainly fall within pixels with high habitat suitability. A few observations are in pixels w

not always occur in optimal habitat as indicated by the specialization value. Heavy da
whereas maximum curvature had a greater influence (0.39). High
rugosity (0.39), higher HSI-B values (0.33), shallow water
(bathymetry: 0.32) were also found to be important. Specializa-
tion coefficients highlighted that all eight variables were
important. Blue-throated wrasse were restricted to areas that
had low HSI-B (�0.92), north-west facing (eastness: �0.85,
northness: 0.47), shallow water (�0.80) and high rugosity (0.24)
(Table 3).

3.1.3. Coarse scale model

The marginality factor showed the same trend as that of the
fine scale model. A strong association was evident with areas
close to reef (�0.68), high rugosity (0.47), high HSI-B values
(0.34), shallow water (0.33) and high maximum curvature (0.29)
(Table 3). Specialization coefficients indicated that blue-throated
wrasse were restricted to areas that were north-east facing
(northness: 0.86, eastness: 0.78), high HSI-B (0.85), close to reef
(�0.53), on top of crests (0.22) and in shallow water (0.33)
(Table 3).

3.2. Spatial patterns of blue-throated wrasse habitat suitability

Three habitat suitability classes were predicted for the best
performing ENFA model. To compare the spatial patterns in
habitat suitability classes within the Discovery Bay Marine
National Park with adjacent waters we applied six landscape
pattern indices to the coarse scale model. Interspersion and
juxtaposition index (IJI) exhibited significantly lower values in the
Marine National Park compared to adjacent waters for unsuitable
(H¼13.20, df¼1, po0.001) and highly suitable (H¼10.24, df¼1,
po0.001) habitat classes indicating that they are both unevenly
distributed (Table 4). Although statistically non-significant in-
and outside the Marine National Park, IJI for moderately suitable
habitat exhibited much greater values compared to unsuitable
and highly suitable habitats, indicating a more even arrangement
of patches. In contrast, the mean shape index (MSI) for unsuitable
habitat was significantly larger (H¼4.88, df¼1, po0.05) in the
Marine National Park. All habitat suitability classes exhibited
a using the coarse scale model. Inset map shows how presence cells (white dots)

ith moderate-unsuitable habitat reflecting the fact that blue-throated wrasse may

shed black line delineates the Discover Bay Marine National Park boundary.
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Fig. 4. Cross-validation results for habitat suitability models for blue-throated wrasse produced using the geometric mean in ENFA. Predicted-to-expected ration indicates

the number of species occurrence cells encountered between cross-validation runs (k¼10). Error bars indicate the standard deviation. Values are shown for three habitat

suitability windows ranging from low habitat suitability scores (0–33) through to high habitat suitability (67–100).

Table 3
Contribution of the variables to the factors generated by ENFA used to build the coarse scale model of blue-throated wrasse habitat suitability.

Fine scale variables Factor 1 M (100%) S (43%) Factor 2 S (24%) Factor 3 S (15%) Factor 4 S (6%) Factor 5 S (4%)

Distance to nearest reef �0.61 0.55 �0.10 0.39 0.02

Rugosity 0.61 0.00 0.05 0.04 0.02

HSI-B 0.31 0.34 �0.69 0.41 �0.17

Bathymetry 0.30 0.76 0.36 �0.01 0.27

Maximum curvature 0.25 0.01 0.10 0.26 �0.43
Eastness 0.09 0.00 0.15 0.49 0.66
BPI 0.03 0.07 �0.59 �0.59 0.52

Northness �0.01 �0.03 �0.04 �0.10 0.09

Medium scale variables Factor 1 M (100%) S (46%) Factor 2 S (27%) Factor 3 S (10%) Factor 4 S (6%) Factor 5 S (6%)

Distance to nearest reef �0.67 �0.54 �0.26 �0.27 0.17

Maximum curvature 0.39 �0.02 0.09 �0.07 0.01

Rugosity 0.39 �0.02 0.03 �0.14 0.24
HSI-B 0.33 �0.25 �0.92 0.15 0.07

Bathymetry 0.32 �0.80 0.26 �0.25 �0.01

BPI �0.14 �0.01 �0.05 �0.09 0.47
Eastness 0.11 0.06 �0.06 �0.85 0.24

Northness 0.05 0.03 �0.01 0.29 0.79

Coarse scale variables Factor 1 M (100%) S (44%) Factor 2 S (28%) Factor 3 S (11%) Factor 4 S (7%) Factor 5 S (5%)

Distance to nearest reef �0.68 �0.53 0.12 0.44 0.22

Rugosity 0.47 0.04 �0.14 0.18 0.13

HSI-B 0.34 0.22 0.85 0.27 0.05

Bathymetry 0.33 0.81 �0.33 0.19 0.11

Maximum curvature 0.29 0.01 �0.02 0.05 0.10

BPI �0.07 �0.01 0.03 0.04 0.22
Eastness 0.06 �0.05 �0.33 0.78 0.35

Northness 0.00 �0.09 0.14 �0.24 0.86

Coefficients are sorted by decreasing value of coefficients on the marginality factor (M). Specialization values for each factor are represented (in brackets) by S. Variables

that make the largest contribution (o�0.2 or 40.2) to each factor are highlighted in bold.
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mean MSI values greater than one, indicating that they all exhibit
noncircular patch shapes. Largest patch index (LPI) and mean patch
size (MPS) showed similar trends with high values being recorded
for unsuitable habitat monotonically decreasing to highly suitable
habitat but were statistically non-significant between regions. Low
LPI and MPS values for highly suitable habitat indicate that the
largest and mean patches are smaller than other suitability classes
presented. Landscape shape index (LSI) and patch size coefficient of
deviation (PSCV) exhibited higher values for moderately suitable
habitat compared to unsuitable and highly suitable but were not
significantly different (Table 4).
4. Discussion

The geometric mean algorithm within ENFA provided a
prediction of blue-throated wrasse habitat suitability.
Models were based on high-resolution multi-beam echo-sounder
(MBES) derived variables and towed video observations at
three spatial scales. The present study confirms other findings
that presence-only models can provide good predictions of
habitat suitability for marine species (Dolan et al., 2008;
Galparsoro et al., 2009; Praca et al., 2009; Tittensor et al., 2009).
Based on our results, we will discuss four main points: First, we



Table 4
Landscape indices used to assess the spatial arrangement and configuration blue-

throated wrasse habitat suitability for inside and out of Discovery Bay Marine

National Park (MNP).

Landscape
pattern index

Region Suitability class Mean7SD

LPI Inside MNP Unsuitable 64.04737.32

Moderately 23.79723.98

Highly 11.05722.44

Outside MNP Unsuitable 78.73730.71

Moderately 11.95717.78

Highly 6.44713.13

LSI Inside MNP Unsuitable 3.1171.96

Moderately 6.3873.72

Highly 4.2174.18

Outside MNP Unsuitable 2.5071.76

Moderately 4.8174.28

Highly 4.7773.14

IJI Inside MNP Unsuitable 0.4870.51**
Moderately 42.13733.37

Highly 0.1770.43**
Outside MNP Unsuitable 7.35712.30**

Moderately 39.06745.04

Highly 17.51718.21**

MSI Inside MNP Unsuitable 1.3970.32*
Moderately 1.4770.25

Highly 1.5670.16

Outside MNP Unsuitable 1.1970.16*
Moderately 1.4270.25

MPS Inside MNP Unsuitable 10.42713.57

Moderately 0.5271.04

Highly 0.1470.41

Outside MNP Unsuitable 15.03714.53

Moderately 0.1070.08

Highly 0.0570.07

PSCV Inside MNP Unsuitable 277.587330.84

Moderately 471.877374.69

Highly 342.567325.53

Outside MNP Unsuitable 226.6577238.20

Moderately 354.817330.58

Highly 308.517224.32

Significant difference between the Marine National Park and adjacent region are

shown in bold and denoted by *po0.05. **po0.001. Descriptions of indices are

given in footnote. Descriptions modified from McGarigal and Marks (1994).

Largest patch index (LPI) is the percentage of the landscape window comprised by

the largest patch. With low values indicating the largest patch in the landscape is

increasingly small. Landscape Shape Index (LSI) is the sum of the all edge segments

(m) within the landscape boundary involving the corresponding patch

type, divided by the square root of the total landscape area (m2), and adjusted

by a constant for square raster cell edges. The larger the LSI the more irregular

the patch shape. Mean Shape Index (MSI) is the patch perimeter (m) divided by the

square root of patch area (m2) for each corresponding patch type, adjusted

by a constant for a square raster cell edge, divided by the number of patches of

the same type. When MSI equals one all patches of the corresponding patch type

are circular. Mean patch size (MPS) is the total landscape area (m2), divided by

the total number of patches, divided by 10000 (to convert to hectares).

Interspersion and juxtaposition index (IJI) is the observed interspersion (%)

over the maximum possible interspersion for the given number of patch types.

When IJI approaches 100% all patches are equally and maximally adjacent to all

other patch types. Patch size coefficient of deviation (PSCV) is the variability in

patch size relative to the mean patch size (Note, this is the population mean, not

the sample mean).
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address some issues surrounding the use of presence-only models
on remotely sensed datasets. Second, we discuss the importance
of spatial scale for predicting blue-throated wrasse habitat
suitability. Third, we discuss the habitat parameters identified
by the models as being important. Fourth, we discuss the spatial
patterns in habitat suitability classes.
4.1. Predictive ability of models

All three variable scales yielded model performances that were
comparable with other good performing ENFA models in the
literature (e.g. Hirzel and Arlettaz, 2003; Wilson et al., 2007).
While these models exhibit variability among cross-validation
results, even the lower end of these ranges produced adequate p/e
ratio values and good separation between suitability windows.
This supports the idea that the ENFA technique appears to be well
matched to modeling habitat requirements of marine demersal
fish based on remotely sensed datasets. A presence-only modeling
approach was chosen over presence/absence methods because
there are difficulties in obtaining reliable absence data from
remotely sensed video datasets. While we acknowledge that to
attain ‘perfect detection’ (i.e. probability of 1) is unrealistic,
obtaining ‘true’ absence data (when animals are actually absent)
is problematic for mobile or inconspicuous species, such as
demersal fishes. Kéry (2002), for example, estimated that 12–34
visits to a site are needed before assuming a 95% probability that a
site is unoccupied. ‘False’ absence data, when animals are present
but not detected, can significantly bias the generated model. This
shortcoming can be avoided using presence-only methods, such
as ENFA (Hirzel et al., 2002). Because of the use of presence-only
data, however, such methods tend to overestimate the area of
suitable habitat (Zaniewski et al., 2002). Overestimating, however,
might be more preferable to underestimating their existence,
particularly when considering a commercially- or ecologically
important species that is likely to be targeted by management
(Fielding and Bell, 1997). Indeed, presence-only methods predict
the potential distribution (fundamental niche), whereas presence/
absence methods reflect the present distribution (realized niche)
of the species (Brotons et al., 2004; Zaniewski et al., 2002). Even
though presence-only methods have limitations, they are increas-
ingly being shown to be a useful approach for predictive habitat
modeling in marine environments.

Another important factor that influences the predictive
performance of these models is variable selection (Araujo and
Guisan, 2006). We generated models based on seafloor variables
because of availability of data (multi-beam echo-sounder data)
and the known ecology of the species (strong seafloor associa-
tions) (Johnson and Gillingham, 2005). While the models
performed well, the addition of other variables may further
improve their predictive capabilities. Bottom shear stress, for
example, has been found to have significant influence on fish
community structure (Vaz et al., 2007).
4.2. Spatial scale

By comparing the three different scale models in this study,
our results indicate the coarse model (2756.25 m2) produced
better suitability results compared to fine and medium. The value
of 2756.25 m2 is substantially larger than the home range
estimates of 400–775 m2 for males and 225–725 m2 for females
(Barrett, 1995). Our results, however, support the suggestion that
habitat selection of space-demanding species may be dominated
by variables operating at or above the home-range scale (Carroll
et al., 1999).

While the coarse-scale model performed better overall,
variable importance differed at the three spatial scales analyzed.
Maximum curvature, for example, was found to have a stronger
influence at the medium scale compared to fine and coarse scales.
This is in agreement with the idea that the species respond to
their environment at multiple spatial scales. Similar scale-
dependence of single habitat variables has been found for reptiles
(Fischer et al., 2004), eagles (Thompson and McGarigal, 2002),
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lobster (Wilson et al., 2007) and marine fish (Moore et al., 2009).
Consequently, we recommend that variables in habitat suitability
models should be included at different spatial scales so that
subtle, but important, habitat preferences can be detected.

4.3. Variables selected by the models

Our results confirm that landscape-scale variables can explain
blue-throated wrasse habitat preferences. They also support the
idea that factors operating at the landscape scale could explain
the variance of species occurrence that may not be explained by
small-scale habitat preferences (Stroch, 2002).

The ENFA models indicated which variables best explained
blue-throated wrasse habitat suitability. Although varying slightly
over the three scale models, blue-throated wrasse showed a
strong preference for regions of shallow water, close to reef, with
high rugosity and maximum curvature and low HSI-B. Mature
blue-throated wrasse preferably live on relatively deep and
exposed reef-dominated habitats, while juveniles occur in large
numbers on shallow seaweed-dominated reefs (Edgar, 2000). This
general habitat preference is confirmed by the strong correlations
with low values of Euclidean distance to nearest reef and
bathymetry and high values of rugosity and maximum curvature
in our models. As expected, we found that models predicted the
largest areas of highly suitable habitat to be shallow reef areas.
These regions are dominated by large stands of kelp (mainly
Ecklonia radiata) (Ierodiaconou et al., 2007b), and perhaps reflect
the habitat use of juveniles. Models also predicted smaller patches
of highly suitable habitat in deeper regions at the northern end of
the site, and may reflect more isolated adult populations (Fig. 3).
This is only speculative as model models did not take into account
different size-class fish. Given adequate data, and building similar
models based on different size-class fish we may be able to detect
differences in habitat uses throughout the blue-throated wrasse
life history. While the towed video system utilized here is not
capable of providing accurate length measurements, the incor-
poration of data derived from other video methods, such as stereo
baited remote underwater video systems that are able to provide
accurate length measurements of fishes (Harvey et al., 2003), is
worthy of further investigation.

4.4. Spatial patterns of blue-throated wrasse habitat suitability

The decline of many species has been linked directly to habitat
loss and fragmentation (Fahrig, 2003). Conservation strategies
now frequently consider not only the amounts of habitat that
must be retained, but also the spatial configurations of habitat
across landscapes of concern (O’Neill et al., 1996; Pulliam et al.,
1992). By generating spatially continuous models of habitat
suitability and applying a suite of landscape pattern indices, we
are able to provide management agencies with accurate informa-
tion that not only indicates where habitat suitability patches are
located, but also an indication of size, variability, isolation,
juxtaposition, spatial arrangement and boundary characteristics
(McGarigal and Marks, 1994). We found that there were few
significant differences in spatial patterns of habitat suitability
classes between the Marine National Park and surrounding area.
We observed that unsuitable patches exhibited more complex
shapes inside the Marine National Park. Furthermore, both
unsuitable and highly suitable habitat classes were more
unevenly distributed inside the Marine National Park. It is not
surprising that we only observed a few differences in the spatial
characteristics in habitat suitability classes between the two
regions. Recent habitat mapping studies along the Victorian
coastline have revealed complex, spatially heterogeneous reef
systems that support a diversity of benthic habitats (Holmes et al.,
2008; Ierodiaconou et al., this issue; Rattray et al., 2009).
Intuitively, with blue-throated wrasse showing such strong
associations with seafloor structure, it is likely that the adjacent
seafloor regions exhibiting similar heterogeneous spatial patterns
reflect this in terms of habitat suitability.
5. Conclusions

The present research highlights the benefits of having spatially
continuous layers of environmental data rather than the catego-
rical or linear descriptors relied on by earlier studies (Babcock
et al., 1999; Friedlander and Parrish, 1998; Westera et al., 2003).
By providing spatially continuous coverage across an entire site
we are able to predict habitat suitability based on video
occurrence records and variables derived from hydroacoustics
over large regions of seafloor. Through these models we were able
to identify the variables and spatial scale that most influence
blue-throated wrasse habitat suitability. Furthermore, we can
begin to quantify the spatial arrangement and representation of
habitat suitability to provide marine managers with a level of
information that has historically been limited to coarse spatial
resolutions. Practitioners should remember, however, that these
models predict a species potential habitat suitability, or distribu-
tion, and should not replace but compliment empirical research.
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